

Crosswind Guidelines

Captain John Cashman Director, Flight Crew Operations Chief Test Pilot, Seattle Boeing Commercial Airplanes

Purpose

Understand origin of crosswind guidelines

- Discuss crosswind values
- Discuss crosswind effects on high by-pass engine airplanes
- Review takeoff and landing techniques

Crosswind Guidelines

 Provided to assist operators develop crosswind policies

No certification requirement

- Maximum available during certification

AFM "Demonstration"

MAXIMUM CROSSWIND (TYPICAL)

The maximum demonstrated crosswind component for takeoff and landing is 36 knots reported wind at 10 meter height. This component is not considered to be limiting on a dry runway with all engines operating.

FAA APPROVED 04-16-01

D631A001

Section 4

Code 0001 Page 9

The Boeing Company

Origin of Guidelines

- Light weight, AFT CG
 Load on nose wheel
- Runway condition
 Friction coefficient
- Tire side force capability
- Aerodynamic controls
 - Lateral/directional
- Engine out RTO
- Flight test data/analysis
- Simulator trials

Crosswind Guidelines (Typical)

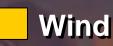
757/767 Flight Crew Training Manual

Takeoff Crosswind Guidelines

2	Runway Condition	Crosswind—Knots				
6	Dry	40				
	Wet	25				
	Standing Water/Slush	15				
	Snow - No Melting	20				
	Ice - No Melting	15				

Land	ing		
Cros		nd	
Guid	eline	es	

Runway Condition	Crosswind—Knots				
Dry	40				
Wet	40				
Standing Water/Slush	20				
Snow - No Melting	35				
Ice - No Melting	17				


Crosswind Takeoff

Low speed/weight controllability most affected

- Tire side force capability limits crosswind
 - -Side force affected by
 - Runway surface and contamination
 - Aft CG and lower GW
- Engine inlet distortion—high bypass ratio engines
 - Effect of crosswind entering nacelle turns airplane downwind
 - Most noticeable on 777

Effect of Crosswind on Engine Inlet

Resultant thrust vector

Compensating rudder

Crosswind Takeoff Techniques

Rolling takeoff recommended

- -Minimizes disrupted airflow into engine
- Smooth application of thrust
- Light forward pressure on elevator
- Moderate aileron into wind
- Maintain centerline with rudder pedal steering and rudder

Don't preset rudder—anticipate rudder reversal

Crosswind Takeoff Techniques (continued)

Don't use tiller past taxi speed (except some classic 747-100)
Don't rotate faster than normal – Tailstrikes

Crosswind Landing

 Pilot crosswind landing technique significantly affects crosswind capability

 Flight control aerodynamic forces and tire side-force are the limiting factors

Crosswind Landing Techniques

Side slip (wing low)

Crab (to touchdown)


Combination slip/crab

Decrab during flare

Crosswind Landing Techniques

Side Slip (Wing Low)

Upwind wing lowered into wind
Opposite rudder maintains runway alignment
Reduced x-wind capability

Crab (To Touchdown)*

- Airplane touches down in crab
- Flight deck is over upwind side of runway
 - -Main gear is on runway center
- Airplane will decrab at touchdown
- Maintain directional control during roll out with rudder and aileron

* Full crab not recommended

Long Beach products

for maximum crosswind on

De-Crab During Flare

Maintain crab on the approach

 During flare, apply rudder to align airplane with runway and opposite aileron to keep wings level

The Boeing Company

Combination Crab and Side Slip

De-crab using rudder to align longitudinal axis with runway. Increase aileron to maintain wing low
Touchdown on upwind tire, wing slightly low

Crosswind Guidelines Side Slip (only)

- Side slip only technique reduces maximum crosswind capability
- Based on 2/3 control input criteria
- Remaining 1/3 control available for gust recovery

Crosswind Guidelines (continued) Side Slip (only)

	Control Limit Sideslip Only Landing (2/3 lateral control (rolling moment) or 2/3 pedal input)											
	Airplane	OEW	1.1* OEW	Flaps	Vref (1.1 OEW)	Sideslip	Bank	%Max Whl	%Max Rud	Crosswind	Control Limit Criteria*	Recommended Crosswind
l		1000 lb	1000 lb		kts	deg	deg			kts		kts
											2/3	
	747-200	380	418	30	121	7.9	4	44	40	16.6	Lateral Control	16
	747-400	400	440	30	121	7.5	4.1	43	30	15.8	2/3 Lateral Control	16
	767-200	180	198	30	117	11.7	Not det.	46	67	23.7	2/3 pedal	24
	767- 300ER	200	220	30	119	12.3	Not det.	48	67	25.4	2/3 pedal	24

Common Questions

- Airplane crosswind structural design
- Auto land limitations
- Disconnection of autopilot for manual crosswind landings
- Auto throttle use in strong gusty crosswinds
- Pure crosswind wind additives to Vref

Crosswind Landings -After Touchdown

- Idle thrust
- Deploy reversers normally
 - Slippery/contaminated runways
- Check speedbrakes up
- Maintain aileron into the wind to keep wings level
- Smoothly but positively lower the nosegear
- Rudder control effective to about 60 knots
- Rudder pedal steering sufficient until taxi speed
- Use asymmetrical braking if necessary
- Use tiller upon reaching taxi speed

Crosswind Landings

- Common Problems
 - Unstable approaches
 - Holding airplane off until below Vref
 - Bounced landings
- Alternatives
 - Go around
 - Be careful not to over-rotate during rejected landing
 - Terrain clearance and missed approach procedure
 - Wait or divert
- Training
 - How does your airline approach crosswind training?
 - Recurrent training plans?
 - Are your pilots maintaining proficiency?

Crosswind Guideline Summary

- Guidelines not limits
- Airline can use guidelines to establish company policies
- Runway condition affects crosswind capability
- Most gust conditions have minor affect on crosswind capability
- Landing crosswind technique affects crosswind capability